

Ficha técnica

Rev.: 0

Fecha: JUNIO 2024

Tubo de aislación BlueStar

Página 1 de 2

Tubos de espuma elastomérica flexible

utilizados en tuberías de refrigeración y aire acondicionado, líneas de agua caliente/fría y sistemas de agua refrigerada

	1	i	1
Detalles técnicos	Estándar	Unidad	Tiras
		W/m.K	0.039 (25°C)
		W/m.K	0.039 (40°C)
Coeficiente de conductividad térmica	EN 12667	W/m.K	0.040 (60°C)
		W/m.K	0.041 (80°C)
Resistencia a la difusión del vapor de agua	EN 12086		m ≥ 7000
Clasificación de la reacción al fuego	EN 13501-1		BL - s2 - d0
Temperatura de servicio	EN 14706	°C	Máx.+120
Niveles de iones de cloro solubles	EN 13468		500
pН	EN 13468		6 – 8
Flexibilidad			Perfecto
Ozono			Bueno
Porcentaje de celdas cerradas		%	>90
Porcentaje de celdas cerradas			Bien
Formaciones de moho y olor			N/A
Aplicaciones para exteriores			Necesita protección contra la radiación UV*

Excellent Foam Cell Technology

High Flexibility

Eco-Friendly

Energy Saving

User Friendly Installation

Ficha técnica

Rev.: 0

Fecha: JUNIO 20024

66.12... Tubo de aislación BlueStar

Página 2 de 2

Les dejamos las cantidades de aislación que viene en cada caja (en metros)

		6mm	9mm	13mm	19mm	25mm
Caño cobre	mm	tiras x caja	tiras x caja	mt/caja	mt/caja	mt/caja
1/4	6	250	168	102	_	
5/16	8	432	300	100		
3/8	10	200	120	90		
1/2	12	168	100	75		
5/8	15	133	90	56	39	
3/4	18	113	72	48	36	
7/8	22	80	68	42	33	
1	25*		72	46	31	
1 1/8	28		49	39	20	
1 3/8	35		36	35	20	12
1 5/8	42		47	30	20	12
	48		40	25	17	12
2 1/8	54*		31	18	15	10
2 3/8	60		31	20	17	
2 1/2	64*		31	19	14	

Tamaño y Tolerancias:

Tolerancia (espesor) Diámetro interior de la tubería

Tolerancia de altura	Tolerancia de anchura	Rango de espesor (mm)	Tolerancia (mm)	De ≤ 100	En > 100
		d <u>D</u> _≤ 8	± 1		
Tubo (Estándar) ±%1,5	_	8 < dD ≤ 18	± 1,5	Ni+1 < Ni < Ni +4Ni	+1 < Di < Di +6
		18 < dD ≤ 31	± 2,5	01-1201201-401	1120120110
		dD > 31	± 3		
	de altura	de altura de anchura	Tolerancia de altura $\frac{\text{Tolerancia}}{\text{de anchura}}$ espesor (mm) $\frac{\text{dD} \le 8}{8 < \text{dD} \le 18}$	Tolerancia de altura Tolerancia de anchura espesor (mm) (mm) $\frac{dD \le 8}{8 < dD \le 18} \qquad \pm 1$ $\pm \%1,5 \qquad - \qquad \frac{8 < dD \le 18}{18 < dD \le 31} \qquad \pm 2,5$	Tolerancia de altura Tolerancia de anchura espesor (mm) (mm) $\frac{dD \le 8}{8 < dD \le 18} \qquad \pm 1$ $\frac{8 < dD \le 18}{18 < dD \le 31} \qquad \pm 1,5$ Di+1 \le Di \ne

Cumple con la norma EN 14304

Información para LOGISTICA:

Caja de cartón	Volumen (m3 / caja)		
380 <u>X</u> 330 X 2090 mm	0,262		

